
The SRFR 5 Modeling System for Surface Irrigation
E. Bautista, A.M.ASCE1; J. L. Schlegel2; and A. J. Clemmens, M.ASCE3

Abstract: The SRFR program is a modeling system for surface irrigation. It is a central component ofWinSRFR, a software package for the
hydraulic analysis of surface irrigation systems. SRFR solves simplified versions of the equations of unsteady open channel flow coupled to a
user-selected infiltration model. SRFR was reprogrammed using a modern object-oriented architecture with the objective of facilitating its
continued development and, thus, the addition of new modeling options and functionalities. The upgraded software is SRFR 5. An important
component of the modeling system is the code that manages computational incidents. While the computational methods used by SRFR 5 have
been widely tested and are generally robust, calculations are prone to failures due to problems with the solution of the nonlinear finite
difference system of equations, discretization problems, and problems with the determination of the appropriate boundary condition at each
computational time step. Code that manages computational incidents has been greatly enhanced in SRFR 5. SRFR 5 has undergone systematic
testing, partly to fix programming errors, but also to improve computations leading to unacceptable volume balance errors. This article
discusses the SRFR 5 modeling system and provides details about its computational methods, architecture, and new features. DOI:
10.1061/(ASCE)IR.1943-4774.0000938. © 2015 American Society of Civil Engineers.

Introduction

WinSRFR (Bautista et al. 2009) is a software package for the hy-
draulic analysis of surface irrigation systems. A central component
of the software is the unsteady flow modeling system SRFR.
WinSRFR includes tools for irrigation system evaluation, design,
and operational analysis, all of which are supported by SRFR
calculations.

SRFR predicts the coupled surface and subsurface flow of water
in a surface irrigation system as a function of system type, geom-
etry, hydraulic resistance and infiltration characteristics of the soil,
and the rate of water inflow as a function of time. These options
have been previously described (e.g., Bautista et al. 2009; Strelkoff
et al. 2009) and will not be discussed here. The objective is to
evaluate irrigation performance for a combination of inputs, and
thus to describe the final infiltration profile and the degree to which
the irrigation requirement is satisfied, and to characterize losses by
deep percolation and runoff. The model assumes one-dimensional
surface flow, which limits the analysis to a single furrow, border
strip, or basin. Furthermore, in the case of borders and basins,
the model cannot deal with the effect of slope across the width
of the field and assumes that inflow is distributed uniformly along
the upstream boundary.

SRFR originated from surface irrigation models developed in
the late 1970s (Strelkoff and Katopodes 1977a; Katopodes and
Strelkoff 1977). These research models were programmed in the
FORTRAN IV language, using concepts in software architecture
that are now more than 40 years old. These research programs pro-
vided the foundation for the BRDRFLW modeling system
(Strelkoff 1985). Like its predecessors, BRDRFLW was developed
for mainframe computers and programmed in FORTRAN. While
the program dealt only with border irrigation, it allowed the user
to select between the zero-inertia and kinematic-wave solution
models, and furthermore provided various options for calculating
hydraulic resistance and infiltration and for specifying the
bottom profile. With the advent of personal computers, SRFR
was introduced in 1990 (Strelkoff 1990, 1991) as an end-user ap-
plication under the DOS operating system. The program added
various options, including the ability to model furrow and basin
irrigation systems, in addition to borders, and a graphical user
interface.

SRFR evolved over the next 15 years, partly through addition of
configuration options, but also through computational improve-
ments. Early versions of the software were prone to computational
failures and could not deal with many complicated flow conditions
that can arise in practice. For example, numerical solutions of the
governing equations can become unstable and eventually converge
to negative flow depths at one or more computational nodes along
the field. Inflow rate variations can induce the irrigation stream to
contract from the downstream end, stop, and eventually readvance
over previously wetted soil. The ability to overcome computational
incidents and to adjust computations in response to unexpected
changes in boundary conditions substantially improved during this
period (Strelkoff 1993).

As new user options and routines for managing the computa-
tions were introduced, the original code underwent reprogramming
over the years to achieve greater modularity, but fundamental
elements of the software architecture were preserved because of
programming language limitations. With numerous new features
being planned for future versions of the software, including options
for modeling constituent transport and new options for modeling
infiltration, their development was being hindered by the obsolete
architecture of the SRFR 4 code.

1Research Hydraulic Engineer, U.S. Dept. of Agriculture, Agricultural
Research Service (USDA-ARS), U.S. Arid Land Agricultural Research
Center, 21881 N. Cardon Ln., Maricopa, AZ 85138 (corresponding author).
E-mail: eduardo.bautista@ars.usda.gov

2Information Technology Specialist, U.S. Dept. of Agriculture, Agri-
cultural Research Service (USDA-ARS), U.S. Arid Land Agricultural
Research Center, 21881 N. Cardon Ln., Maricopa, AZ 85138. E-mail:
james.schlegel@ars.usda.gov

3Senior Hydraulic Engineer, West Consultants, Inc., 8950 S 52nd St.
210, Tempe, AZ 85284; formerly, Director, U.S. Dept. of Agriculture,
Agricultural Research Service (USDA-ARS), Arid Land Agricultural
Research Center, 21881 N. Cardon Ln., Maricopa, AZ 85138. E-mail:
bclemmens@westconsultants.com

Note. This manuscript was submitted on September 30, 2014; approved
on June 23, 2015; published online on August 18, 2015. Discussion period
open until January 18, 2016; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Irrigation and Drai-
nage Engineering, © ASCE, ISSN 0733-9437/04015038(11)/$25.00.

© ASCE 04015038-1 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000938
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000938
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000938
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000938

An upgraded engine, SRFR 5, was released with WinSRFR
4.1. The new engine was developed using an object-oriented
architecture in Microsoft’s .NET development environment. New
configuration options and computational improvements have been
introduced since its initial release. This paper discusses the archi-
tecture of the SRFR 5 modeling system and its object-oriented
implementation.

Governing Equations

Surface flow in surface irrigation can be modeled with modified
versions of the de Saint Venant (1871) equations, which describe
continuity and momentum for one-dimensional unsteady open-
channel flow. In differential form, these equations are (Strelkoff
and Clemmens 2007)

∂Ay

∂t þ ∂Q
∂x þ ∂AZ

∂t ¼ 0 ð1Þ

�∂Q
∂t þ ∂

∂x
�
Q2

Ay

�
þ v

2

∂AZ

∂t
�
þ gAy

�∂y
∂x − S0 þ Sf

�
¼ 0 ð2Þ

Eq. (1) expresses the principles of conservation of mass and
states that the time t [T] rate of change in the surface volume
per unit length Ay [L3=L] is a function of the rate of change with
distance x [L] of water fluxQ [L3=T] and the time rate of change of
water loss due to infiltration Az [L3=L]. Az represents the subsur-
face flow component and will be briefly discussed in the following
paragraph. Conservation of momentum is expressed by Eq. (2),
which states that the time rate of change of momentum (represented
by the term ∂Q=∂t) is a function of the distance rate of change of
momentum flux [∂=∂xðQ2=AyÞ], the sum of forces acting on the
flow, and momentum sinks. The forces are the gradient in hydro-
static pressure (gAy∂y=∂x), the weight component of the water in
the direction of flow (gAyS0), and frictional resistance by the soil
surface and vegetation (gAySf), in which g is the acceleration of
gravity [L=T2], y the flow depth, S0 [-] the field bottom slope,
and Sf [-] the friction slope. The sink term v=2 · ∂AZ=∂t represents
the loss of momentum due to infiltration, with v = flow velocity
[L=T] (Strelkoff 1969). Eq. (2) is written in nondivergent form,
meaning that under some conditions, it fails to properly conserve
momentum.

Historically, SRFR has used empirical functions to represent the
infiltration process. However, since the SRFR modeling system
aims to be both a practical and research tool, it is being developed
to be compatible with different infiltration modeling options, under
the assumption that the choice for a particular modeling task de-
pends on the needs of the user and the availability of data. Hence,
the primary focus of the SRFR development efforts, and the focus
of this article, is the surface flow component.

Eqs. (1) and (2) constitute a coupled system of hyperbolic, non-
linear differential equations. With hyperbolic equations, computa-
tions start with known values for the dependent variables at time
zero, and the solution then propagates forward in time along paths
in the x-t plane known as characteristics. Since the speed of propa-
gation along the characteristics is finite, the solution at any point in
the computational domain depends on a finite region bounded by
characteristics intersecting at that point. Eqs. (1) and (2) are asso-
ciated with two sets of characteristics, one with a positive slope
(i.e., positive speed), while the other can have a negative, zero,
or positive slope. Information entering the computational domain
through a positive characteristic can only travel in the positive
(downstream) direction, while information entering through a neg-
ative characteristic travels upstream. This allows modeling of

waves reflecting off the downstream boundary. The overall behav-
ior of hyperbolic equations needs to be taken into account when
developing numerical solutions in order to prevent computations
from becoming unstable or producing inaccurate results. Numerical
schemes based on the method of characteristics, explicit finite dif-
ferences, implicit finite differences, and finite volumes have been
proposed for solving the unsteady open-channel flow equations.
The fact that computational methods for the unsteady flow equa-
tions continue to be an area of active research attests to the math-
ematical challenges presented by these equations.

Mainly because of computational difficulties, simplified ver-
sions of Eq. (2) were adopted for the SRFR development.
Katopodes and Strelkoff (1977) showed that under typical irriga-
tion conditions, where flow velocities and the Froude number of the
flow are small (typically less than 0.2), the zero-inertia model can
produce solutions similar to those computed with the hydrody-
namic model. The zero-inertia model neglects the inertial terms
in the momentum equation (as well as the infiltration contribution)
and, thus, replaces Eq. (2) with

gAy

�∂y
∂x − S0 þ Sf

�
¼ 0 ð3Þ

Eqs. (1) and (3) represent a parabolic system of differential
equations. As with hyperbolic equations, information propagates
along characteristic paths, but the speed of propagation is infinite.
Hence, the domain of dependence at a point in the x-t plane is the
entire computational domain bounded by the current time line.
Because of this property, parabolic equations can be solved effi-
ciently and with fewer computational problems than hyperbolic
ones with implicit finite difference schemes. Those schemes make
all computational nodes at the current time line dependent on one
another. Since characteristic paths emanate from both boundaries,
as in the hydrodynamic model, the zero-inertia equations can model
the reflection of waves.

The zero-inertia model sometimes has been labeled as the
diffusion-wave model, following the diffusion-wave analogy first
proposed by Hayami (1951). However, various researchers (Ponce
1990; Sivalapan et al. 1997) have shown that diffusion wave
models containing inertial terms can be developed from modified
forms of the hydrodynamic equations. The zero-inertia (also re-
ferred to as noninertial) model is, then, a particular type of diffusive
wave model.

Numerical solutions of Eqs. (1) and (3) can still run into diffi-
culties. Specifically, they can produce artificial oscillations in the
computed depth and discharge profiles when the field bottom slope
is relatively large, as the surface profile is relatively uniform but
experiences very rapid changes near the tip of the advancing wave.
Under those conditions, since the weight of the fluid is essentially
in balance with the frictional resistance, the pressure gradient term
is small and can be neglected. This reduces Eq. (2) to

Sf ¼ S0 ð4Þ
which implies normal flow depth at any distance x as a function
of the local Q. The Chezy equation is typically used to compute
friction slope in open channel flow

Sf ¼ v2

C2R
ð5Þ

in which C is the Chezy coefficient [L1=2=T], R the hydraulic radius
[L], and v is as previously defined. In SRFR, the default option for
calculating C is with the Manning (1889) equation but the Sayre
and Albertson (1961) equation is provided as an advanced option.
Different authors have discussed the merits and limitations of those

© ASCE 04015038-2 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

formulations when modeling surface flow in surface irrigation
systems (e.g., Maheshwari 1992; Trout 1992).

Eq. (1) in combination with Eqs. (4) and (5) is known as the
kinematic-wave model (Lighthill and Whitham 1955) and consists
of a single hyperbolic partial differential equation with one depen-
dent variable. The model is associated with positive characteristics
only, and thus, with waves that travel in the downstream direction
only. Since boundary conditions can only be specified at the up-
stream end of the field, the kinematic-wave model cannot be used
with blocked-end systems. The model cannot be used either when
the bottom slope is zero or adverse on any field segment, conditions
under which normal flow cannot be attained. Katopodes and
Strelkoff (1977) recommend using the kinematic-wave model
when the value of a dimensionless parameter P, calculated as a
function of slope, normal depth, inflow rate, and the time needed
to infiltrate a depth equal to the normal depth, is greater than 100.
This condition is more easily met with increasing values of slopes
and irrigation time.

SRFR simulates irrigation problems using either the zero-inertia
or kinematic-wave model. The parent application, WinSRFR, se-
lects a method for the particular data, taking into account the
downstream boundary condition and field slope. The USDA
Natural Resources Conservation Service border design methodol-
ogy (USDA-SCS 1974) assumes normal depth for upstream flow
depth calculations when the field bottom slope is greater or equal
to 0.004. The kinematic-wave model is selected under these slope
conditions, while the zero-inertia model is selected under any slope
condition, whenever the downstream end is blocked. The user can
override the selected model with free-draining systems, subject to
the constraint on zero or adverse slopes.

Initial and Boundary Conditions

In principle, Ay and Q are the dependent variables in Eqs. (1) and
(3); however, the SRFR modeling system actually works with y
and Q. Evidently, y and Ay are uniquely related through the
user-specified cross-sectional definition. Therefore, conditions at
t ¼ 0 are given by

yðx; 0Þ ¼ 0 Qðx; 0Þ ¼ 0 ð6Þ
Upstream boundary conditions that can be used in combination

with the zero-inertia and kinematic-wave models are a specified
flow rate or specified flow depth hydrograph as a function of time

Qð0; tÞ ¼
�
Q0ðtÞ; t ≤ tco
0; t > tco

ð7Þ

yð0; tÞ ¼ y0ðtÞ; ∀ t ð8Þ

Qð0; tÞ ¼ Q0ðtÞ; t ≤ tco yð0; tÞ ¼ y0ðtÞ; t > tco ð9Þ
In the above expressions, tco is the cutoff time [T]. SRFR han-

dles most irrigation events with Eq. (7). Currently, Eq. (8) is not
used. Eq. (9) is used to simulate drainback irrigation, a method
in which the surface water stored in a basin flows back into the
supply channel after cutoff, thus increasing the inflow rate to a
basin located immediately downstream. The outflow from the
upstream basin is determined by the water level drawdown in
the supply channel. The rate at which the water level drops has
to be specified by the user.

In the field, the upstream flow depth will decrease gradually un-
til recession time. This process is adequately modeled with the
zero-inertia equations, but not with kinematic-wave theory, as
the model implies an instantaneous drop in water depth at cutoff
time. This assumption is not unreasonable when the field slope

is large, for which a short lag time between cutoff and recession
time at the boundary can be expected. However, the instantaneous
recession can create artificial oscillations in the computed profile.
To avoid this problem, SRFR approximates the gradual flow depth
decrease at the boundary by combining zero-inertia and kinematic-
wave calculations (Clemmens and Strelkoff 2011).

Downstream boundary conditions can only be specified with
the zero-inertia models. The following condition applies during
advance:

yðxa; tÞ ¼ 0; Qðxa; tÞ ¼ 0; t ≤ tL ð10Þ
with xa = advance distance; tL = final advance time [T]; and L =
field length. After the stream reaches the end of the field, water runs
off if the field end is open or ponds if blocked. With free-draining
systems, a free overfall condition is assumed at the downstream
boundary. Strelkoff and Katopodes (1977b) determined that with
the zero-inertia model, the theoretically correct boundary condition
to apply at a free overfall is y ¼ 0, since the specific energy is a
function of depth alone and the minimum is attained with zero
depth. The resulting value of discharge remains bounded. This
boundary condition was first used by Strelkoff and Katopodes
and subsequently in BRDRFLW and SRFR. This approach compli-
cates the computation of infiltration at the boundary with formu-
lations that are flow-depth dependent (e.g., the Green-Ampt
formula), while having no effect on the computed runoff, just
on the shape of the surface profile near the boundary. Thus a more
general expression for the boundary condition is

yðL; tÞ ¼ fðQÞ; t > tL ð11Þ
where fðQÞ = critical flow relationship, as in the hydrodynamic
model, or normal depth if the slope is steep (conditions under
which use of the kinematic-wave model would be advisable).

If the field end is blocked, then the downstream boundary con-
dition is simply

QðL; tÞ ¼ 0; t > tL ð12Þ
During an irrigation event, depending on the relationship be-

tween inflow and infiltration rate at a particular time, the advancing
front may slow down, stop, and retreat. This front-end-recession
condition can happen during advance or after advance is complete,
prior to cutoff. It can also happen with surge irrigation, depending
on the discrete pulses of applied water. In those cases, a second
surge may be introduced into the field while the initial surge
may still be advancing, and may overtake and merge with the initial
surge. The timing and location of these events cannot be deter-
mined a priori and have to be resolved as part of the solution.

Solution Method: Numerical Scheme

SRFR uses a four-point scheme based on Eulerian integration to
solve both the zero-inertia and kinematic-wave equations. This
scheme is explained with the help of Fig. 1. Values for the depen-
dent variables are known at time line t and a solution is sought at
timeline tiþ1, with the solution advancing by a time increment
δt ¼ tiþ1 − ti. The computational domain consists of N rectangular
cells, with each cell representing a control volume. Each cell is de-
fined by two nodes at ti and two nodes at tiþ1, with both sets of
nodes located at the same distance grid points, xk and xkþ1. For
convenience, the letters L and R are used to represent, respectively,
the left (xk) and right (xkþ1) nodes at time tiþ1, while the subscripts
J and M represent the left and right nodes at time ti (Walker and
Skogerboe 1987). Thus, the length of an individual cell is identified
in the diagram δxLR. With Eulerian integration, the advancing

© ASCE 04015038-3 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

stream is represented by adding a cell to the downstream end of the
computational domain, with all cells stationary. In the following
discussion, δxN is the value of δxLR for the tip cell, and the position
of the advancing front is xN . The four-point scheme expresses the
conserved quantities as a function of weighted averages of the de-
pendent variables at the four nodes that define the cell. Details on
the derivation based on the integral relationships for the governing
equations can be found in the previously mentioned references.

Application of the box scheme to the equation of conservation
of mass yields

½θðQL −QRÞ þ ð1 − θÞðQJ −QMÞ�δt
− f½ϕyðAyL − AyJÞ þ ð1 − ϕyÞðAyR − AyMÞ�gδxLR
− f½ϕzðAzL − AzJÞ þ ð1 − ϕzÞðAzR − AzMÞ�gδxLR ¼ Rc ð13Þ

The equation is satisfied when RC, the residual of conservation
of mass, is equal to zero. In this expression, θ is a temporal weight-
ing factor and ϕy and ϕz are spatial weighting factors for the surface
and subsurface volumes, respectively, all of which have a value be-
tween 0 and 1. These parameters, together with the relationship
between temporal and spatial step size and the Courant number
of the flow, affect the numerical stability of the box scheme when
applied to the hydrodynamic equations (e.g., Cunge et al. 1980;
Lyn and Goodwin 1987). In that case, the solution is uncondition-
ally stable when ϕy ¼ ϕz ¼ ½ and 0.5 < θ ≤ 1.0, the case in which
the finite difference approximation is known as the Preissman
scheme. These values have proven adequate when applied to the
zero-inertia equations, with θ set to 0.6. Prior versions of SRFR
adopted a scheme for calculating individual ϕz for each interior
cell, taking into account the curvature of the infiltrated profile
(Strelkoff and Clemmens 2007; Strelkoff et al. 2012). Computa-
tional tests have shown that such an approach produces volume
balance errors of the same magnitude as those computed with ϕz ¼
½ while being computationally expensive. Therefore, that method
was abandoned.

The discrete expression for Eq. (3) follows the original approach
of Strelkoff and Katopodes (1977a), who expressed the residual of
conservation of momentum, RM, as a function of variables at time

tiþ1 only (θ ¼ 1). The equation is written using the water surface
elevation h instead of y, to facilitate modeling of horizontal water
surfaces in field depressions (Strelkoff and Clemmens 2007; Cunge
et al. 1980)

½ϕyAyL þ ð1 − ϕyÞAyR�ðhL − hR − SfLR · δxLRÞ ¼ RM ð14Þ

As with Eq. (13), Eq. (14) is satisfied when RM ¼ 0.
Strelkoff and Katopodes (1977a) derived special spatial weight-

ing factors for the tip cell (shape factors) to account for the increas-
ing curvature of the surface and subsurface profile increases near
the tip of the advancing wave. These surface and subsurface shape
factors are uncertain because their derivation is subject to numerous
assumptions and depend on the roughness and infiltration formu-
lation used in the analysis (e.g., Walker and Skoberboe 1987;
Zerihun et al. 2005). However, it is easy to show through computa-
tional tests that zero-inertia model solutions are sensitive to these
shape factors mostly during the computation of the initial time
steps. Later in the calculations, their effect is spread out over all
computational nodes at the current time line. Thus, those factors
are derived in SRFR using the equations originally presented in
Katopodes and Strelkoff (1977).

Application of Eqs. (13) and (14) to N computational cells pro-
duces a system of 2N þ 2 nonlinear algebraic equations with at
least 2N þ 4 unknowns—the values of the dependent variables
at time iþ 1 at each node. Equations and unknowns are balanced
by applying two boundary conditions, typically an inflow rate at the
upstream (left) boundary and one of several conditions at the down-
stream (right) boundary. During advance, the depth and discharge
are zero at the right boundary, but the advance distance at a given
time or the advance time at a given distance become the unknown.
During runoff with the zero-inertia conditions, the depth is zero and
the discharge is unknown. An alternative is to specify a depth-
discharge relationship, where one of these variables is considered
unknown and the other is expressed as a function of the unknown
variable. With a blocked end, the discharge is zero and the depth is
unknown.

The system of equations is solved iteratively using the Newton-
Raphson method. To this end, Eqs. (13) and (14) are linearized
using a Taylor series expansion

∂RC

∂AL
ΔyLþ

∂RC

∂QL
ΔQLþ

∂RC

∂AR
ΔyRþ

∂RC

∂QR
ΔQRþ

∂RC

∂Ψ ΔΨ¼−RC

ð15Þ

∂RM

∂AL
ΔyL þ ∂RM

∂QL
ΔQL þ ∂RM

∂AR
ΔyR

þ ∂RM

∂QR
ΔQL þ ∂RM

∂Ψ ΔΨL ¼ −RM ð16Þ

In the above expressions, the derivative terms are elements of
the Jacobian matrix for the vector ½RC RM �T, the Δ terms are
the unknown incremental corrections to the values of the dependent
variables, andΨ represents either an unknown δt or δxN and applies
only for advance calculations. The resulting system of linear
equations can be represented as

∇R · Δ ¼ −R ð17Þ
in which R = vector of residuals for all cells; Δ = vector of cor-
rections; and ∇R = Jacobian matrix for R. The system is sparse and
banded if the downstream boundary condition is y ¼ fðQÞ or if
δxN needs to be computed for a specified δt. With this structure,
the matrix can be solved with the conventional double-sweep

Fig. 1. Computational cell with the four-point scheme and the resulting
computational grid

© ASCE 04015038-4 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

technique (Cunge et al. 1980; Walker and Skobergoe 1987;
Strelkoff 1992). The double-sweep method uses recursive relations
developed by assuming a linear relationship between a Δy and its
corresponding ΔQ

ΔQk−1 ¼ EkΔyk−1 þ Fk ð18Þ
The recursion formulas are built node by node by combining

Eq. (18) with Eq. (15) to obtain a relationship for Δyk−1 and then
combining the result with Eqs. (16) and (18) again, but written for
node k to obtain a relationship forΔyk. The procedure is initialized
by assuming E1 ¼ 0 and F1 ¼ ΔQ0. The downstream boundary
condition is used to complete the downstream sweep, from which
the correction for the last dependent variable is determined. A sec-
ond set of recursive relationships then calculates the corrections
going in the upstream direction. The recursive relations are detailed
in the aforementioned references.

If δxN is specified and δt the unknown, which is the default
method for computing advance, then the matrix is still banded
but the last column contains the terms representing the derivatives
of RC and RM with respect to time. For those cases, the system of
equations is solved using a modified double-sweep method
(Strelkoff 1992), developed with Eq. (19) in lieu of Eq. (18)

ΔQk−1 ¼ EkΔyk−1 þHkΨþ Fk ð19Þ
The resulting corrections Δ are used to update the dependent

variables and then the values of the residuals. The solution con-
verges when the absolute value of the residuals falls below a tol-
erance value. If not, the process is repeated.

Eq. (13), in combination with a normal depth relationship
(e.g., the Manning equation) is used to solve the kinematic-wave
equation. However, in contrast with the zero-inertia application, ϕy
is set to zero to reduce artificial oscillations that often develop near
the downstream boundary. Such an approach has been suggested by
Lyn and Goodwin (1987), when the box scheme is applied to the
hydrodynamic equations, but only when negative waves are ex-
pected to have little influence on the solution. Clearly, this recom-
mendation would apply to the kinematic-wave model. During
advance, if Ψ ¼ δt, then the solution is implicit and iterative
and it is found, again, using a modified double-sweep method
developed from Eq. (15) alone (Strelkoff 1992). Otherwise, the sys-
tem of N equations is solved cell by cell, starting from the upstream
cell where the boundary condition is given.

Whether using the zero-inertia or kinematic-wave equations,
the core computational tasks that need to be carried at each time
step can be summarized as follows:
• Retrieve pertinent data from the previous time line for all nodes

needed for computations at the current time (y, Q, Ay, Az, h,
Sf , etc.);

• Generate initial estimates of y and Q for all nodes at the current
time line;

• Compute estimates of nodal variables for the current time line
(Ay, Az, h, Sf, etc.);

• Apply the discrete equations of conservation of mass and mo-
mentum to each cell at the current time line;

• Solve the system of equations to obtain new estimates for y and
Q at the current time line; and

• Repeat this process until the continuity and momentum equa-
tions are satisfied.

Management of the Numerical Solution

Previous research and experience suggest that the numerical algo-
rithms employed by SRFR are numerically stable and approximate

the solution of the differential equations accurately. Still, the com-
putations can fail for reasons to be explained below. Moreover,
successful simulations occasionally produce large volume balance
errors and, thus, invalid results. This latter problem received par-
ticular attention during the development and testing of SRFR 5.

Preventing computational incidents and reducing volume errors
depends on how well several contingencies are managed. A critical
component of the SRFR modeling system is the code that manages
those unforeseen circumstances, which can be classified as
• Problems with the solution of the system of equations;
• Discretization problems (i.e., problems with the spatial or tem-

poral increment used to advance the solution in time); and
• Boundary condition problems.

Time step calculations begin by examining the state of the com-
putational domain. The code identifies appropriate boundary con-
ditions and a discretization strategy from the problem data and the
history of calculations. SRFR then attempts to solve the time step.
The calculations are hierarchical and computational incidents can
occur at different levels of this hierarchy. The bottom level in this
hierarchy is, of course, the linearized equation system solver based
on double–sweep algorithm. In the following discussion, this equa-
tion solver will be identified as EQSWP. The code attempts to iden-
tify conditions that would lead to computational incidents and
generates an error condition—an exception in computer program-
ming jargon—that pushes the handling of the problem to a higher
level in the calculation hierarchy. This results in modifications to
the solutions generated by EQSWP, the discretization, and/or the
boundary conditions. Error objects, which are vital components
of modern object-oriented programming languages, are extensively
used by SRFR 5 to handle exceptions.

Problems with the Solution of the System of Equations

Problems at this level are (1) division by zero, (2) oscillations in the
calculation of the residuals, (3) an iteration that produces unaccept-
able values for the unknown variables, and (4) failure to converge.

A division-by-zero problem occurs at the EQSWP level. It in-
dicates that the discrete governing equations cannot be solved with
the current data and that a change in spatial or temporal increment
is needed. For example, the problem can arise with a pronounced
deceleration of the flow, and difficulties in getting the water to ad-
vance to the next prescribed advance increment. New calculations
have to be attempted, but using a smaller space increment.

Calculations often deal with very small changes in the values of
the dependent variables. Because of numerical processor limita-
tions, the computed residuals can oscillate. Typically, this problem
involves only the momentum residual of the zero-inertia model and
is confined to one or a few cells, and the residual is within an order
of magnitude of the tolerance value. This problem is addressed by
monitoring the history of computed residuals and accepting the sol-
ution if oscillations are detected and the convergence criterion is
nearly met.

At some point in the simulation, the calculations will produce
negative flow depths. Most often, those negative values signal the
dewatering of a node and, thus, the need to change the location of a
boundary and, perhaps, the corresponding boundary condition.
However, negative flow depths can also be computed during an
EQSWP iteration and may represent an overcorrection. For exam-
ple, when simulating advance, artificial oscillations can arise in
the flow depth profile during the course of an apparently smooth
simulation, most frequently near the boundaries. While these oscil-
lations attenuate with time, their initial calculation may be problem-
atic. Abrupt changes in boundary conditions and field properties
can also induce large initial corrections. SRFR attempts to address

© ASCE 04015038-5 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

this type of problem, only while the stream is advancing, by scan-
ning the sign of the resulting yiþ1 values. If at least one negative
value is found, then all Δ’s are progressively reduced. If Δδt is
negative, then the adjustments continue until δt becomes unrealis-
tically small. At that point, new time step calculations are attempted
using a smaller δxN.

The Newton-Raphson scheme generally converges to the solu-
tion or produces unacceptable results in just a few iterations.
Occasionally, the scheme will converge slowly without producing
substantial improvement in the value of the residuals, as a result
of discretization or boundary conditions problems. Hence, an
exception needs to be generated when the number of iterations is
excessive.

Discretization Problems

The computational grid needs to be managed to assure accurate
numerical integration and to prevent or resolve computational in-
cidents. For accurate integration, the subintegrand functions must
vary smoothly over the length of a cell, without discontinuities in
the value of the dependent variables. To this end, setup code de-
termines the location of computational nodes in the x-t plane as
a function of the problem data and establishes discretization guide-
lines. The solution progresses by using either a δx or δt increment.
The type of increment to use and the magnitude of that increment
are determined from calculations at each time step, in response to
results from previous time steps or to problems with the cur-
rent step.

The spatial discretization is initially defined by the location of
so-called hard x-nodes. These are locations where field properties
(channel bottom elevations, cross sections, infiltration, and rough-
ness) are specified, or where a change in boundary condition is
specified (e.g., cutoff by distance). Since these hard nodes define
boundaries of computational cells, they must not be specified in
very close proximity to one another because that will result in a
very small δxN and potential convergence problems. Likewise, hard
t-nodes are needed to precisely enforce changing boundary condi-
tions. The setup code determines an initial spatial discretization
based on the list of spatial hard nodes and the default advance incre-
ment δxD, where δxD = field length/cell density. The cell density is
set by the WinSRFR user interface based on the problem data, gen-
erally to a value between 40 and 80 cells independently of the field
length, but that value can be overridden by users. Each simulation
model imposes additional spatial discretization requirements. The
kinematic-wave model requires a finer cell resolution at the head of
the field to handle postcutoff recession calculations with the zero-
inertia/kinematic-wave approximation described earlier, while the
zero-inertia model requires a denser grid near the downstream
boundary to handle potentially large δt changes at the beginning
of postadvance calculations.

Using the setup information, calculations for a time step begin
by setting targets for the advance distance (xT) and time tiþ1 (tT),
independently of whether the time step is eventually going to be
calculated with given values of δxN or δt. Those targets are deter-
mined based on the list of hard nodes, δxD, and the history of past
spatial and temporal increments. For example, xT could be the lo-
cation of a hard x-node, if that node is located between xN−1 and
xN−1 þ δxD. Various empirical rules are employed to try to keep
consecutive cells from being too dissimilar in length. If a hard
t-node exists and that time has not been reached, then that value
would determine tT . When calculating advance with δxN given,
the solution tries to advance to xT . If the resulting tiþ1 is greater
than tT , calculations are started over and rerun with δt given
(δt ¼ tT − ti) and δxN unknown. Likewise, if the advance is being

calculated with δt given, and the stream has not reached the end
of the field, then calculations for the time step are repeated if
the resulting xN exceeds xT .

As explained in the previous section, computational incidents
often are resolved by repeating the calculations for a time step with
a smaller spatial or temporal increment. This is not however the
primary mechanism controlling the step size. When the stream
is advancing, the code monitors the deceleration of the stream using
the ratios δt=δxN and tiþ1=xN . If the flow is slowing down, empiri-
cal rules are used to preemptively reduce δxN for the next time step.
This strategy is particularly useful for resolving problems that can
build up over several time steps and that will eventually lead to
termination of the execution. This mechanism also allows the target
δxN to increase for subsequent time steps, up to the value defined
by the default cell width, δxD, if the flow accelerates. Likewise, if δt
is specified for the current calculations, the magnitude of δt is de-
termined using empirical rules that account for the past history of
time increments. These rules allow the step to increase or decrease,
as needed. It is important to note that the mechanisms described
above control the discretization relative to δxD, which is a function
of the WinSRFR-selected (or user-selected) cell density. While ex-
perience indicates that the rules used by WinSRFR to select a cell
density work well most of the time, the step size still can be too
coarse for some problems, which makes the solution sensitive to the
step size, albeit slightly. Thus, it is always good practice for a mod-
eling task to test the sensitivity of a selected solution to cell density
(i.e., coarse, fine, extra fine).

Boundary Condition Problems

As noted earlier, time step calculations can begin with uncertain
knowledge of boundary locations and conditions at time tiþ1.
Those data have to be assumed based on conditions at ti, and re-
vised with calculation outcomes. For example, water may cover the
entire field after cutoff. That condition might persist for one or
more time steps and then recession will begin. Recession calcula-
tions will then eliminate one or more computational nodes during
a time step, perhaps beginning at the upstream end of the field.
Determining when recession begins and how many nodes to elimi-
nate during a time step involves trial and error, until the equations
can be satisfied for a defined stream.

Determining appropriate boundary locations and conditions
may be relatively straightforward when the field data and boundary
conditions are uniform but can get very complicated when the flow
exhibits significant deceleration and/or when the problem data are
variable. For example, based on previous results and problem data,
it may be reasonable to assume that the stream is advancing during
the current time step. Calculations begin, perhaps, with δxN ¼ δxD.
However, as noted in previous sections, calculations need to ac-
count for the tT targets, to properly enforce changes in boundary
condition data. Thus, calculations may need to switch from advance
by distance to advance by time. On the other hand, calculations
may run into trouble when advancing by distance, perhaps because
the distance increment is too large, or because the front of the wave
is not advancing or even receding due to inflow reductions.

The hierarchy of calculations that deals with testing different
boundary locations and conditions is built around the computa-
tional options (solution modes) of EQSWP. These modes define
the setup of Eq. (17)—boundary conditions and unknowns. With
the zero-inertia model, those solution modes are
• Advance-by-time (δt known, δxN solved for);
• Advance-by-distance (δxN known, δt solved for);
• Runoff-by-time (δt known, δxN not applicable); and
• Pond-by-time (δt known, δxN not applicable).

© ASCE 04015038-6 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Because of underlying solution assumptions, the ponding-
by-time mode does not apply to the kinematic-wave model. These
EQSWP modes are applied to the various possible boundary
condition combinations for a stream. SRFR handles 4 types of
upstream boundary conditions and 5 downstream boundary condi-
tions (Fig. 2), for a total of 20 upstream/downstream boundary
combinations. Note that code allows the upstream drainback con-
dition to be used in combination with all downstream boundary
conditions even though the ponding and recession conditions are
the only ones that are likely to be used in practice. Boundary
condition combinations that involve an advancing stream or read-
vancing stream can be solved with either the advance-by-time or
advance-by-distance EQSWP modes while other combinations
can only be solved with the runoff-by-time or pond-by-time modes.

A higher level of the time step calculations involves testing and
handling multiple streams. This is clearly the case with surge irri-
gation, for which computations need to allow for the merging of
streams during a time step. Multiple streams can also occur as a
result of variable, but nonsurge, inflow to a field with undulating
bottom elevations. In those cases, calculations need to allow the
stream to split, with one substream receding, while the other
one possibly continues to advance.

As with problems with the equation solver or the discretization,
the code tries to handle boundary problems preemptively. Time step
calculations begin by locating and conditioning the stream. This
latter process involves scanning the flow depths calculated during
the previous time step, and infiltrating water in place for nodes with
extremely small flow depths, if justified by the prevailing boundary
conditions. Conditioning streams also may involve merging
streams, as could occur with surge irrigation.

Implementation in an Object-Oriented Architecture

This section aims to provide an overview of the object-oriented
architecture of SRFR 5. Additional details are provided in docu-
ments prepared in support of the development of the code (SRFR
5.2 architecture and high-level design).

The following software development objectives were defined in
reprogramming SRFR:
• Develop the code in an object-oriented architecture, making

full use of the concepts of encapsulation, inheritance, and
polymorphism;

• Develop code that is modular, extensible, and maintainable
such that new computational capabilities can be added without
affecting existing functionalities;

• Develop SRFR as a reusable dynamic link library (DLL) that can
be made available to other applications and expose its internal
mathematical algorithms and functions to client applications
through an application programming interface (API); and

• Develop programmer-friendly debugging and diagnostic tools.

Fig. 3 depicts the class library of SRFR 5. In the figure, the
classes inside dotted boxes represent groups of related classes—
those that manage input data, those that manage computational
model and grid data, and those that manage the flow of execution
and the resulting outputs. The SRFR API is the object that com-
municates with the client application (e.g., WinSRFR). The client
application defines through the API the problem data and solution
model to use. Outputs generated by Execution and Results
Management classes are then made available to the application
again through the API.

In accordance with principles of object-oriented programming,
computational options are handled, whenever possible, through the
use of base classes and subclasses. The base class defines the fun-
damental data requirements, methods, and outputs for a class, while
the subclass defines specific implementations, i.e., the specific op-
tion. The subclass provides structures for data storage and methods
that are specific to the option. When SRFR makes a call to a class,
the base class is always used. The client application instantiates the
specific (subclassed) objects needed for a simulation and passes
references to those objects to SRFR. This facilitates writing code
that handles multiple options, as well as options that have yet to be
developed.

Examples of the above described paradigm are the zero-inertia
and kinematic-wave models, which are implemented as subclasses
of the SolutionModel base class (identified in Fig. 3 in italics).
This base class produces the corrections needed by the Newton-
Raphson scheme, but calculations are different for zero-inertia
and kinematic-wave models. All SRFR calls to the simulation en-
gine are made through a generic SolutionModel object. Depending
on the data, WinSRFR determines which specific model to use. A
full hydrodynamic model can be added with this architecture at a
future time, in principle without changing the existing code. In ad-
dition to the solution model, all input classes were implemented
using the class/subclass paradigm (also shown in italics in the
diagram).

Classes in the Execution and Results Management grouping are
associated with the computational grid structure of Fig. 1 and the
flow of data during a simulation. The Irrigation class manages the
simulation, from time zero until final recession time. The output is
the complete description of the irrigation flow. This class interacts
with the Plat and Continuum classes, which are responsible for
managing temporal and spatial problem data, and thus the evolving
discretization. As the name implies, calculations for individual time

Upstream Downstream

Inflow Advance

No Inflow - Depletion Runoff

No Inflow - Recession Ponding

Drainback Recession

ecnavdA-eR

Fig. 2. Upstream/downstream boundary condition combinations used
by SRFR to solve a stream

Fig. 3. The SRFR 5 class library

© ASCE 04015038-7 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

steps are managed by the Timestep class. A time step simulation
involves solving one or more streams, and thus the Stream class
handles calculations at the stream level. Calls to the SolutionModel
class are made at the Stream class level. A stream is defined by
multiple cells and nodes; thus cell and node data are handled by
the Cell and Node classes, respectively.

Fig. 4 provides an overview of the flow of calculations from the
SRFR API to the SolutionModel classes. The class name is noted in
bold, to the left of each major block in the figure. The subblocks on
the right-hand side of each major block identifies the hierarchy of
methods called until reaching the final call to the EQSWP linear
equation solver. If the method is unsuccessful, then it will generate
an exception. Hence, Fig. 4 also identifies the various computa-
tional levels at which exceptions are handled. A method may also
return a status report to the next level of calculations, with infor-
mation that may help identify a next course of action.

The Simulate method in the SRFR API class starts the simula-
tion, by verifying data, instantiating the objects needed to manage
the computational grid and the Irrigation object, and then by calling
the Simulate method of the Irrigation class. Exceptions reported at
this level terminate the simulation because all attempts to solve the
equations for the given time step have failed. While such exceptions

are rare nowadays, they can occur if the data are extremely atypical,
for example, with unrealistically large variations in field elevation.
The Irrigation.Simulate method instantiates the Timestep objects
that need to be used to build the solution, manages the solution
in time and space, and calls the SolveTimestep method of the Time-
step class. An exception reported at the Timestep class level gen-
erally cannot be handled, except when calculations involve the
zero-inertia equations and a near-stagnant stream with very small
flow depths. Under those conditions, water is simply infiltrated in
place, thus successfully concluding the simulation.

Calculations of the Timestep class involve four different
layers. The first layer corresponds to the SolveTimestep method,
which identifies and conditions the streams within the time step
and attempts to solve each stream. If multiple streams are deter-
mined, then one is identified as the main stream, while the others
are labeled secondary streams. If water is flowing into the field,
then the main stream is the stream originating at the inlet. If inflow
is zero, the main stream is either a stream that is still flowing or the
stream with the least volume. Since the primary stream dictates the
δt that will be used to solve all other streams, the SolveTimestep
method calls the SolvePrimaryStream method and, if needed the
SolveSecondaryStream method, based on the δt resulting from

Fig. 4. Simulation flowchart, showing the path from the SRFR API to the EQSWP equation solver

© ASCE 04015038-8 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

the primary stream calculations. Fig. 5 illustrates the structure for
the SolvePrimaryStream method, and identifies three of the primary
stream boundary condition combinations. The name of the first two
methods is self-explanatory while the last, FERwithDrainback, ap-
plies to downstream-end recession conditions with drainback irri-
gation. Each of the methods in the second layer selects a stream
solver (a method in the third layer), with the selection depending
on the boundary conditions and the stream type (primary or sec-
ondary). There are 20 different stream solvers, 15 of which apply
to the primary stream while 5 apply to secondary streams. Most
stream solvers are associated with a specific combination of boun-
dary conditions but some solvers apply to more than one combi-
nation. An exception by a primary stream solver signals the need to
test an alternative boundary condition combination. Exceptions
generated while solving a secondary stream cannot be passed up
through the exception hierarchy because δt cannot be modified.
Those exceptions are handled within the SolveSecondaryStream
method, by infiltrating water in place.

The last layer in the Timestep class, consisting of four methods,
is the layer where a stream solution is attempted by using either a
time or distance increment. As their names imply, two of those
methods are for a stream with a moving downstream boundary,
while the other two deal with a stream with fixed or receding boun-
daries. Unsuccessful calculations generate an exception and trigger
a new attempt with a smaller spatial or temporal increment. This
process continues until the calculations succeed or the increments
become too small, thus generating an exception. The latter event
forces calculations back to the level where new boundary condi-
tions are implemented. After calculations succeed, the resulting
values of xA and tiþ1 are checked against their targets. In the event
that the target is exceeded, calculations are repeated but with a dif-
ferent increment, or switched from a specified δxN to a specified δt
or vice versa, as indicated by the vertical and diagonal arrows com-
ing out of the AdvanceToXA and AdvanceToT methods in Fig. 4.

The four methods in the Stream class represent the layer at
which the Newton-Raphson scheme is managed. At each iteration,
each of these methods calls EQSWP, which is a method of the
SolutionModel class (either zero inertia or kinematic wave). The
four methods in the Stream class map into one the four EQSWP
computational modes. Exceptions generated by EQSWP cannot
be handled by the Stream class methods. However, those methods
validate the output from EQSWP, and either attempt to adjust the
corrections if negative flow depths are computed, or flag nodes that
might be undergoing recession. In the latter case, the Newton-
Raphson iteration is terminated and the simulation returns to the
last computational level in the Timestep class, so that changes
can be made for the solution to move forward.

Diagnostics and Code Testing

SRFR 5 replaced all of the text-based diagnostic files of SRFR 4
with a graphical diagnostic and debugging tool. This tool is avail-
able not only to SRFR programmers, but also to third-party devel-
opers that use the SRFR engine. The Simulation Debug Window
(Fig. 6) consists of three different viewers. The left-most compo-
nent, the Irrigation Viewer, is used to inspect the discretization
produced by a simulation and, thus, provide a view similar to Fig. 1.
Regions in the computational domain with low and high cell den-
sity can be easily discerned with this tool. The viewer also identifies
cells where the final residuals exceeded the tolerance value. This
can be of importance when diagnosing irrigations with volume bal-
ance errors. The Stream Viewer, located at the bottom right, is used
to inspect graphically and numerically outputs from a stream cal-
culation. By stepping through the streams computed at each time
step, one can identify the point at which jagged profiles begin to
develop, which can ultimately lead to negative flow depths. The
programmer can zoom in on calculations for a specific cell and
its associated nodes by clicking on any of the cells depicted in
the stream graph. The cell viewer (top right) displays all pertinent
information used in the calculation of residuals for the selected cell,
including the coefficients on depth and discharge used in the dou-
ble-sweep solver. The stream, cell, and node results are available
for the entire simulation.

The SRFR 5 code was initially tested by conducting simulations
with a suite of benchmarking scenarios. The objective of those tests
was to identify and explain differences in results computed with the
new code in comparison with the old code. As expected, this pro-
cess uncovered programming errors in both the new and old code.
In addition to this benchmarking process, a code-testing application
was developed that runs SRFR subject to random inputs. The range
of input values to explore is defined prior to each test. Several hun-
dred thousand random runs were executed with this tool with the
goal of identifying pathways that would lead to failed simulations.
This testing led to substantial enhancements to the structure for
handling exceptions. It was not uncommon for up to 10% of the
simulations to fail during the initial testing period, and those
failures are very uncommon at this stage of the development.
The testing program was also used to identify conditions under
which calculations produced unacceptable mass balance errors.
Likewise, the main sources of those errors have been identified
and corrected. Initial testing identified simulations with volume
balance errors greater than 20%. Larger errors mostly occurred with
simulations involving front-end recession and readvance, and sim-
ulations involving larger variations in bottom slope. Currently, the
error for a typical simulation is less than 0.1%. SRFR 5 has been
subjected to a more rigorous and extensive testing than any of its
predecessors.

Discussion

Key benefits of the current architecture of SRFR 5 relative to the
procedural code of previous versions are worth highlighting.
Procedural FORTRAN forces all calculations to follow well-defined
unambiguous paths. Options are handled with conditional state-
ments, which allow the code to branch to different sets of calcu-
lations. The code of SRFR 4 contains many nested conditional
statements to deal with its many options, and thus, it had become
extremely difficult to upgrade. As explained earlier, SRFR 5 takes
full advantage of the class/subclass paradigm, and as such, replaces
many conditional statements with calls to the base class. This
has greatly simplified parts of the code and/or produced greater
modularization. As an example, the subroutine that calculated

Fig. 5. Flowchart for the SolvePrimaryStream method. The method
selects one of the 16 upstream/downstream boundary conditions that
can be applied to the primary stream

© ASCE 04015038-9 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

the cross-sectional, infiltration, and roughness properties at each
node based on y and Q previously consisted of about 800 lines.
The current method handles more options than before with slightly
less than 100 lines of code.

Future development will test the extensibility of SRFR 5 classes.
Presently, only the Infiltration base class has been tested with recent
additions of infiltration options. All infiltration options are imple-
mentations of the Infiltration class. Their output is the infiltrated
depth and rate for a given opportunity time. SRFR 5 inherited only
empirical infiltration options from SRFR 4, and in all of those cases,
infiltration is a function of opportunity time only, in addition to the
parameters of the formulation. Infiltration based on the Richards
and Green-Ampt equations has been added to SRFR 5. In addition
to opportunity time, these options require a history of flow depths at
each computational node. Those implementations required some
changes to the architecture of the Infiltration class. Hopefully, fu-
ture subclasses should be easier to implement and require no further
changes to the base class.

An important associated benefit of the class/subclass structure
is that subclasses can be developed without having access to the
base class code. The authors hope that this feature will encourage
third-party development of future SRFR 5 capabilities. Documen-
tation of the object-oriented architecture is available upon request.

While SRFR 4 was already relatively robust, SRFR 5 has
stronger capabilities for overcoming computational incidents,
partly as a result of computational improvements, but mostly as
a result of a modern structure for handling exceptions. Notable
computational improvements include the detection of oscillations
and the ability to use the governing equations to solve multiple
streams. Previously, the solution was applied only to the primary

stream, while other streams were solved considering only volume
balance or infiltrated in place.

The SRFR 4 code made extensive use of common blocks for
data management. Since that technology provides virtually no
mechanisms for data validation, it was easy to write code that used
memory segments with no data or inappropriate data (Strelkoff
et al. 2000). This problem has been eliminated by encapsulating
the data with objects.

As mentioned earlier, SRFR 5 offers an API that allows a client
application to use any of the classes exposed by SRFR. In addition,
the API provides access to various functions used by SRFR. Those
functions are independent of the SRFR classes and may be useful to
a client application. For example, infiltration calculations with a
Kostiakov formula are handled by the Kostiakov class, a subclass
of the Infiltration class. The actual infiltration calculation is per-
formed by a function in the SRFR API. This function is available
to SRFR, as well as to the client application, but only if the client is
developed in the .NET environment. An extension to the API has
also been developed that allows SRFR to communicate with appli-
cations developed outside the .NET environment, specifically using
the Microsoft Component Object Model technology. In this case,
the communication is limited to the SRFR classes.

Conclusions

The SRFR modeling system for surface irrigation was reprog-
rammed using an object-oriented architecture. The upgraded soft-
ware is more robust than previous versions and provides a better
pathway for adding new modeling capabilities and options. SRFR

Fig. 6. The simulation debug window showing the irrigation, stream, and cell viewer

© ASCE 04015038-10 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

5 was programmed as a reusable dynamic-link library, exposes its
functionality through an application programming interface, and is
better suited to support the continued development of theWinSRFR
software package. The WinSRFR software package is available for
public download at http://www.ars.usda.gov/services/software/
software.htm.

Acknowledgments

The authors would like to acknowledge Dr. Theodor (“Fedja”)
Strelkoff, who retired as this manuscript was being developed.
Dr. Strelkoff was a pioneer in the field of unsteady flow modeling
of surface irrigation systems and led the development of the SRFR
code and its predecessors over three decades. He also contributed
some of the initial ideas for this article.

Notation

The following symbols are used in this paper:
Ay = surface volume per unit length [L3=L];
Az = infiltration volume per unit length [L3=L];
C = Chezy coefficient [L1=2=T];
g = acceleration of gravity [L=T2];
L = field length [L];
N = number of computational cells at a given time step;
Q = flow rate [L3=T];
R = hydraulic radius [L];

RC, RM = residuals of conservation of mass and momentum,
respectively;

S0 = field bottom slope [L=L];
Sf = friction slope [L=L];
t = time [T];

tco = cutoff time [T];
ti = discrete time [T];
tL = final advance time [T];
v = cross section–averaged flow velocity [L=T];
x = distance [L];
xa = advance distance [L];
xk = discrete distance [L];
y = flow depth [L];
Δ = vector of corrections computed by an iteration of the

Newton-Raphson method;
∇R = Jacobian matrix for the vector of residuals R;
δt = discrete time increment [T];

δxLR = length of computational cell [L];
δxN = length of tip cell [L];

θ = temporal weighting factor used by the four-point
scheme [-];

ϕy, ϕz = spatial weighting factors used by the four-point scheme
for the surface and subsurface volumes [-]; and

Ψ = unknown variable in the system of equations, either δt
or δxN.

References

Bautista, E., Clemmens, A. J., Strelkoff, T. S., and Schlegel, J. (2009).
“Modern analysis of surface irrigation systems with WinSRFR.” Agric.
Water Manage., 96(7), 1146–1154.

Clemmens, A. J., and Strelkoff, T. S. (2011). “Zero-inertial recession for
kinematic-wave model.” J. Irrig. Drain. Eng., 10.1061/(ASCE)IR
.1943-4774.0000289, 263–266.

Cunge, J. A., Holly, F. M., Jr., and Verwey, A. (1980). Practical aspects of
computation river hydraulics, The Pitman Press, Bath, England.

de Saint Venant, A. J. C. B. (1871). “Théorie du mouvement non-
permanente des eaux avec application aux crues des riviéres et à
l’introduction des marées dans leur lit.” Compte Rendus, Acad. Sci.,
73(148-154), 237–240.

Hayami, S. (1951). “On the propagation of flood waves.” Bulletin No. 1,
Disaster Prevention Research Institute, Kyoto Univ., Kyoto, Japan.

Katopodes, N. D., and Strelkoff, T. (1977). “Dimensionless solutions of
border irrigation advance.” J. Irrig. Drain. Div., 103(IR4), 401–417.

Lighthill, M. J., and Whitham, G. B. (1955). “On kinematic waves, I.
Flood movement in long rivers.” Proc. R. Soc. London, Series A,
229, 281–316.

Lyn, D. A., and Goodwin, P. (1987). “Stability of a general Preissmann
scheme.” J. Hydr. Eng., 10.1061/(ASCE)0733-9429(1987)113:1(16),
16–28.

Maheshwari, B. L. (1992). “Suitability of different flow equations and hy-
draulic resistance parameters for flows in surface irrigation: A review.”
Water Resour. Res., 28(8), 2059–2066.

Manning, R. (1889). “On the flow of water in open channels and pipes.”
Trans. Inst. Civ. Eng., 20, 161–207.

Ponce, V. M. (1990). “Generalized diffusion wave equation with inertial
effects.” Water Res. Res., 26(5), 1099–1101.

Sayre, W. W., and Albertson, M. L. (1961). “Roughness spacing in rigid
open channels.” J. Hydr. Div., 87(3), 121–149.

Sivalapan, M., Bates, B. C., and Larsen, J. E. (1997). “A generalized,
non-linear, diffusion wave equation: Theoretical development and
application.” J. Hydrol., 192(1–4), 1–16.

Strelkoff, T. (1969). “One-dimensional equations of open channel flow.”
J. Hydr. Div., 95(HY3), 861–876.

Strelkoff, T. (1985). “BRDRFLW. A mathematical model of border irriga-
tion.” Water Conservation Laboratory, Phoenix.

Strelkoff, T. (1990). “SRFR. A computer program for simulating flow
in surface irrigation.” WCL Rep. No. 17, U.S. Water Conservation
Laboratory, ARS-USDA, Phoenix.

Strelkoff, T. (1991). “SRFR:A model of surface irrigation—Version 20.”
Irrigation and drainage, W. F. Ritter, ed., ASCE, Honolulu, 676–682.

Strelkoff, T. (1992). “EQSWP: Extended unsteady flow double-sweep
equation solver.” J. Hydr. Eng., 10.1061/(ASCE)0733-9429(1992)
118:5(735), 735–742.

Strelkoff, T., Clemmens, A. J., and Schmidt, B. V. (2000). “ARS software
for simulation and design of surface irrigation.” Proc., 4th Decennial
National Irrigation Symp., ASAE, Phoenix, 290–297.

Strelkoff, T., and Katopodes, N. D. (1977a). “Border-irrigation hydraulics
with zero inertia.” J. Irrig. Drain. Div., 103(IR3), 325–343.

Strelkoff, T., and Katopodes, N. D. (1977b). “End depth under zero-inertia
conditions.” J. Hydr. Eng., 103(HY7), 699–711.

Strelkoff, T. S. (1993). “Flow simulation for surface irrigation design.”
Management of irrigation and drainage systems: Integrated perspec-
tives, R. G. Allen, ed., ASCE, Park City, UT, 899–906.

Strelkoff, T. S., and Clemmens, A. J. (2007). “Hydraulics of surface sys-
tems.” Design and operation of farm irrigation systems, G. Hoffman
and R. G. Evans, eds., American Society of Agricultural and Biological
Engineers, St. Joseph, MI.

Strelkoff, T. S., Clemmens, A. J., and Bautista, E. (2009). “Field properties
in surface irrigation management and design.” J. Irrig. Drain. Eng.,
10.1061/(ASCE)IR.1943-4774.0000119, 525–536.

Strelkoff, T. S., Clemmens, A. J., and Bautista, E. (2012). “Shape factors
for elements of the infiltration profile in surface irrigation: Generic
approach.” J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000413,
485–488.

Trout, T. (1992). “Furrow flow velocity effect on hydraulic roughness.”
J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(1992)118:6(981),
981–987.

USDA-SCS. (1974). “Border irrigation.” National engineering handbook,
USDA, Soil Conservation Service, Washington, DC.

Walker, W. R., and Skogerboe, G. V. (1987). Surface irrigation. Theory and
practice, Prentice Hall, Englewood Cliffs, NJ.

Zerihun, D., Furman, A., Warrick, A. W., and Sanchez, C. A. (2005).
“Coupled surface-subsurface flow Model for improved basin irrigation
management.” J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2005)
131:2(111), 111–128.

© ASCE 04015038-11 J. Irrig. Drain Eng.

J. Irrig. Drain Eng.

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

E
du

ar
do

 B
au

tis
ta

 o
n

08
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm
http://dx.doi.org/10.1016/j.agwat.2009.03.007
http://dx.doi.org/10.1016/j.agwat.2009.03.007
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000289
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000289
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000289
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000289
http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:1(16)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:1(16)
http://dx.doi.org/10.1029/92WR00424
http://dx.doi.org/10.1029/WR026i005p01099
http://dx.doi.org/10.1016/S0022-1694(96)03116-2
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:5(735)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:5(735)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:5(735)
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000119
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000119
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000119
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000119
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000413
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000413
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000413
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000413
http://dx.doi.org/10.1061/(ASCE)0733-9437(1992)118:6(981)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1992)118:6(981)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(111)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(111)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(111)

